
Generalized Automatic Color Selection for Visualization

Amy Ciavolino and Tim Burke

Abstract—Creating a perceptually distinct coloring for visualizing large data sets with one or more related properties can be difficult, even for a domain
expert. To aid in the color selection process, we present a method for selecting an optimized coloring for these data sets by applying a force-directed
algorithm. The method we have implemented selects hue values using a constraint graph derived from relationships within the data. This optimal set of
hues can then be converted to colors using any color space and used to color the data points in a visualization. This method is demonstrated through a
geographical domain problem involving school districts, specifically depicting elementary to middle to high school feeder patterns. Further, the method
is applied to two different sets of constraints for creating visualizations of directory structures: file size relationship constraints and dominant file type
constraints.

Index Terms—Human Factors, User Interfaces, Optimization, color selection, map visualization, optimization

1 INTRODUCTION

This project works towards a domain independent search-based

color selection technique for visualizing data with discrete re-

lated properties. The goal of the coloring technique described

is to generate colors for data points in such a way that the simi-

larities and dissimilarities between the data points are apparent.

Creating a coloring by hand that accomplishes this goal can

be difficult, particularly for large data sets which is why auto-

matic selection can be useful. Although the relationships in the

data are domain specific, we present a process and examples of

translating these relationships to a constraint graph with simi-

larity and dissimilarity constraints as edges and data points as

nodes.

For data sets which have multiple discrete or categorical

properties, there are differing approaches to visualizing the re-

lationships between the data. A common approach is to display

patterns (stripes, textures, other region partitioning methods)

but others use colors to represent properties in a visualization

which are either blended or each property is mapped to a differ-

ent color component (e.g., hue, saturation, and value). In this

work, we we focus on hue to visualize the discrete properties in

the data, that way saturation and brightness can be reserved for

visualizing other parts of the data, including continuous data.

The color selection produced by the algorithm will be de-

pendent on the constraints derived from the data being visual-

ized. As constraints are dependent on the type of data being

visualized, and the precedence of those constraints is domain-

dependent, some thought must go into selection and weight of

the constraints when applying this coloring technique. As dis-

cussed in section 4, the school district problem has very differ-

ent categorical constraints as compared to the directory struc-

ture or file type domains.

Our approach to generating the color sets involves several

steps. For each specific domain example, a set of similar-

• Amy Ciavolino is a student at the University of Maryland, Baltimore

County, E-mail: aci1@umbc.edu.

• Tim Burke is a student at the University of Maryland, Baltimore County,

E-mail: tburke2@umbc.edu.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online

23 October 2011; mailed on 14 October 2011.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

ity and dissimilarity relationships must be identified between

data points, which is then used to create a constraints graph

of those relationships (edges) between the data points (nodes).

The edges within the constraint graph can also be assigned a

weight. Similarity relationships between data points have a

force to pull the node colors closer together, and dissimilarity

relationships apply a force to push the node colors apart. Once

the constraint graph has been constructed, a force-directed al-

gorithm optimizes the forces in the graph to find an optimal

distance between node colors that satisfies the push and pull

of the constraint forces between nodes. Once the colors have

been selected, the original data set can be visualized using the

generated colors, in any type of visualization. The result is a

visualization of the original data, where colors represent the re-

lationships between the discrete or categorical traits of the data

points.

2 RELATED WORK

Prior research in this area explores how coloring can be used

in different visualization approaches. Much of the available re-

search has focused on using ranges of colors to represent ranges

of continuous data. That approach is not always effective as

most individuals do not have an intuitive sense of ordering for

hues, as such using a rainbow color scale is ineffective for dis-

playing scalar data [2], though our coloring algorithms ap-

proach of using color sets is not bound by this constraint as

we are exploring discrete traits. Other areas of research have

explored ways of using different colors to present multiple data

points [7] - the school district coloring domain provides an

example of how this approach is useful.

Of interest to our approach, other work has focused on se-

lecting visually distinct colors by using distance between col-

ors in a color space. Physiological factors affect human color

perception, and using Euclidean distance to balance colors in

a perceptually uniform color space such as the L∗,u∗,v∗ color

space allows for the selection of effective color sets [3]. None

of this work addresses the issue of automatic color set selection

and optimization.

3 ALGORITHM

The goal of the color set algorithm is to produce a mapping

from data points to colors. These data points can be anything

Fig. 1. An example run of the color change algorithm depicting the rate of change in hue values for the individual nodes after every 100 iterations. As the series
progresses, the change in hue values falls to zero as each node as the forces between nodes are balanced.

from file types, to map regions, to folders. The colors are se-

lected based the relationships within the data. In section 4 we

discuss the methodology for determining these relationships.

Once the relationships are been determined, they are repre-

sented as a constraint graph where nodes represent data points

to be colored in a visualization of the full data set and edges

represent the identified relationships. This constraint graph and

is used to generate a color for each node by applying a force-

directed layout method to balance the constraints in the graph.

Force-directed layout algorithms (often referred to as spring

layout algorithms) simulate forces of repulsion and attraction

acting on objects. These algorithms are often used in graph

drawing where the goal is to find positions for the nodes that

locally minimize the forces on the nodes. By representing the

node positions as a hue value and using the edges in our con-

straint graph, we can use these methods to produce optimized

color assignments.

3.1 Constraint Graph

Each data point to be colored in the visualization of the full data

set translates to a node in the constrain graph, and the identified

relationships translate to edges. There are two types of edges to

represent two types of relationships within the data: similarity

relationships, and dissimilarity relationships. Similarity edges

supply a forces that pull hue values closer together, resulting in

final colors that are visually related. Dissimilarity edges, con-

versely, supply a forces that pushes hue values apart, yielding

final colors that are visually distinct.

3.2 Color Circle

The position of each node is represented as a hue value in

the range (0,1] and is initialized randomly in that range. This

method of representing node position effectively creates a one-

dimensional, wrapped space in which to execute the force-

directed algorithm. Once the hue values have been generated,

they can be used to define colors in any color space by using a

constant lightness and saturation.

In our implementation, we convert the hues to colors us-

ing the HLS color space but a better choice may be to use the

L∗,u∗,v∗ color space due to its perceptual uniformity. Specifi-

cally, the L∗,u∗,v∗ color space has the characteristic that similar

distances in the space correspond to similar perceptual differ-

ences between colors.

3.3 Color Distance

Because the range of all possible hues on the circle is one-

dimensional and wrapped, we define a distance metric ρ to

measure the differences between the hues. This distance metric

is defined for any two colors on the circle, c1 and c2 ∈ (0,1],
as:

ρ (c1,c2) =

{

2|c1 − c2| : |c1 − c2| ≤
1
2

1−2|c1 − c2| : |c1 − c2|>
1
2

(1)

This definition yields distances in the range (0,1], where a

distance of 1 corresponds to colors on the opposite sides of the

circle (|c1 − c2|=
1
2
).

3.4 Forces

There are two types of forces that act on the nodes in the con-

straint graph: edge forces (similarity, ~fsim and dissimilarity, ~fdis

edges) and general color separation forces, ~fsep. Each force and

edge type is described in more detail below. Additionally, each

forces has a corresponding weight associated with it (wsim, wdis,

and wsep) that reflects the importance of that force and is used

to scale the force corresponding force value.

The force-directed layout is updated iteratively, either until

the system stabilizes (i.e., the velocity of all color assignments

becomes smaller than a specified constant vmin) or until a maxi-

mum number of iterations has elapsed. In figure 2, we show the

change in hue value after each 100 interactions. Notice that as

the number of iterations increase, the change in hue values be-

tween iterations falls, and eventually decreases to zero. During

each iteration, we compute all of the forces acting upon each

node, compute their weighted sum, and apply that force to each

node which changes its hue value.

When each force is computed, the proper direction of the

force needs to be determined because of the wrapped nature

of the color space. Given two hue values (c1, c2), the proper

direction for a force that pushes the nodes apart (~fdis or ~fsep)

can be determined as follows:

σ(c1,c2) =

{

−1 : c1 +(1− c2)≤
1
2

1 : c1 +(1− c2)>
1
2

(2)

For forces that pull nodes together (~fsim), this value may sim-

ply be negated, or the input order of the nodes may be reversed.

Similarity Edges Similarity edges represent attractive

forces, ~fsim, that act on nodes to ensure that the colors of those

nodes are visually similar. Each similarity edge may also have a

weight associated with it representing how closely those nodes

are related. Those weights are in addition to the overall weight

of each force type. For instance, if we have three nodes rep-

resenting three file types, .doc, .docx, and .pd f , a .doc file is

more closely related to .docx files than a .pd f file. Therefore an

edge between .doc and .docx would have a higher weight than

an edge between .doc and .pd f . The value of the similarity

force ~fsim(ci) for the ith color is defined as:

~fsim (ci) = ∑
c j

ρ(ci,c j)w(ci,c j) (3)

Where w(ci,c j) is the weight of the edge between ci and c j in

the constraint graph. The value of the force increases linearly

with the distance between two colors.

Dissimilarity Edges Dissimilarity edges represent repul-

sive forces that act on nodes to ensure that the colors of nodes

are visually distinct. As with similarity edges, each edge may

also have a weight associated with it. For example, if color-

ing a map, the user may want adjacent regions to have easily

distinguishable colors so the borders of the regions are clear.

To produces that result, adjacent regions could be connected by

dissimilarity edges. The value of this repulsive disssimilarity

force ~fdis(ci) for the i color assignment is defined as:

~fdis (ci) = ∑
c j

(1−ρ(ci,c j))
2w(ci,c j) (4)

Again, where w(ci,c j) is the weight of the edge between ci

and c j in the constraint graph. For this force, the value de-

creases with the square of the distance between the two colors.

Separation Forces The default separation forces are not

defined within the constraint graph, but can be thought of as

edges that connect each node to every other node in the graph

and push the nodes apart (much like the dissimilarity edges).

These forces are meant to enforce a minimum distance between

nodes so that each node color is visually distinguishable. Ad-

ditionally, this force keeps colors that should be similar from

being exactly the same color. In the some domains, it may be

desirable to be able to identify each data point in order to make

a legend which this force enables. By definition, these forces

are explicitly short-distance repulsive forces. The force is ap-

plied only if the distance ρ (c1,c2) is lower than a predefined

boundary value, bsepmax.The separation force for ci is define as:

~fsep (ci) = ∑
c∧ρ(ci,c j)<bsepmax

1−
ρ(ci,c j)

bsepmax

(5)

This force decreases linearly with the distance between two

colors becoming 0 when ρ (c1,c2) = bsepmax.

4 APPLICATION DOMAINS

We present three example domain applications to demonstrate

the color selection algorithm. For each example, we describe

the process used to determine the relationships in the data,

which translate to the constraint edges graph used by by the

color selection algorithm. This process involves identifying the

data points which will be colored in a visualization, the ways in

which the data point are related, and the types of these relation-

ships. As discussed in section 3, The relationships can have two

types, similarity relationships and dissimilarity relationships.

4.1 School Districts

Fig. 2. The constraint graph for the school districts domain problem depicting the
edge weights between the school data points. The outer ring represents elemen-
tary schools and the inner ring shows middle schools.

Our first domain is a geographical visualization problem in-

volving how neighborhood regions within a suburban Maryland

county map to school districts, and how to visually represent

the three level feeder patterns of elementary, middle, and high

school districts. The result of the visualization is a county map

with regions colored by school district. The utility of this ex-

ample comes in working with a local school board to visualize

proposed adjustments to school districts and how it impacts the

K-12 school feeder patterns.

Our first consideration is what data points will be colored in

our map visualization. The goal is to be able to see school dis-

tricts and how these districts are related, so the school districtsx

become the nodes in our constraint graph. The next considera-

tion is how these nodes are related. In this domain, there are two

clear relationships which we explore, feeder patterns and map

adjacency, but other relationships such as standardized testing

scores or school size could be considered as constraints. As

school assignments are discrete categorical values, feeder pat-

terns work well for demonstrating this coloring technique.

Now that we have identified the relationships, we must cat-

egorize them as similarity or dissimilarity constraints. In the

case of the feeder patterns, we would like feeder schools to be

a similar color to the higher level school they feed into, so our

feeder relationship is a similarity constraint. Because of the na-

ture of map visualizations, it is easier to see region boundaries

when adjacent regions have distinct colors. Therefore, the col-

ors of school districts which are adjacent should be distinct or

dissimilar so the map adjacency relationships is a dissimilarity

constraint. Note that only school at the same level (elemen-

tary, middle or high school) can be adjacent because districts at

different levels over lap.

The final constraint graph for this visualization is comprised

of school districts as nodes, feeder patterns as similarity con-

straints and districts adjacency as dissimilarity constraints. In

addition to this basic constraint structure, the feeder pattern

edges were each assigned a weight proportional to the number

of students moving from one school to the other. This resulted

in the lower level school with the most students moving to a

higher level school having a color closest to the higher level

school.

4.2 Directory Structure

Fig. 3. The constraint graph for the directory structure domain problem. Solid
lines between nodes depict parent-child relationships and dashed lines represent
neighbor relationships (nodes sharing the same parent node).

The second is a domain problem that involves visualizing di-

rectory structures. This depicts similarity relationships of size

between parent and child directories along a directory tree hier-

archy. For this visualization, the items that will be colored are

folders in the directory structure so folders will be the nodes

in our constraint graph. The most obvious relationship between

folders is a parent-child relationship so we chose to have a simi-

larity constraint between parent folders and their children. This

constraint alone is not that interesting, but there is also weight

to these constraints based on the percent the childs size is of

the parents size. This creates a coloring where it is easy to

see which sub-folder contains most of the content of the parent

folder.

The second constraint in the graph for this example is similar

to adjacent school districts in the previous domain. We would

like nodes that are adjacent in our visualization to be visually

distinct and in the sunburst visualization we chose (figure 3),

folders at the same depth are displayed in a ring. If folders

in the same ring were assigned very similar colors, is would

be difficult to see the boundaries between their display areas.

Therefore, folders at the same depth are assigned dissimilarity

constraints.

4.3 File Type

The last example is different from our previous examples in

that we will use the algorithm generate a legend for a set of

Fig. 5. The constraint graph generated from the file types depicted in figure 4.

values instead of generating colors to be used directly in a visu-

alization. This was accomplished by modeling the relationships

between categories in the data rather than the relationships be-

tween the data points themselves. The desired result is to gen-

erate a coloring for the legend where similar categories are as-

signed similar colors. For a small number of categories, this

could be accomplished by hand. For example, if you were to

assign a color to elementary, middle and high schools it would

be easy to chose yellow for elementary, orange for middle, and

red for high schools, but as the set of categories expands and has

more complex relationships, it becomes increasingly difficult to

create the color set by hand. To demonstrate this method, we

reused the file system domain but added a file type property to

each folder which was the most common file type in the given

folder. This file type property is our category which can be any

file type, but we used a subset of common file types for our leg-

end. Even our subset of file types was to large and complex to

color well by hand so we represented the relationships between

the file types as a tree which we then converted to a constraint

graph.

Figure 4 is a small portion of the relationship tree showing

the relationships between document types. Notice that DOC

and DOCX are both leaves at the same depth because they are

very similar file types and ODT (Open Document Format) is

equally as similar to either of those types but not as similar as

they are to each other so it is placed as a leaf node one level up

from DOC and DOCX. Also notices that PDF is a document

type but is not an editable type like the other types so PDF is

places one level above the other types. It is useful to think of

the tree as a nested list where each list contains types that are

similar and the types within that group that are more similar are

then put into a sub-list. The tree in figure 4 can be represented

by the following nested list structure:

(((DOCX ,DOC),ODT),(T XT,HT ML),PDF)

Once this tree has been constructed, a constraint graph is

generated by connecting each type, or node, to every other node

with a similarity constraint. As with the file size graph, the im-

portant part of these constraints is the weight. The weights are

Fig. 4. An example file-type relationship tree displaying the relationship between similar and dissimilar file types.

determined using the tree structure by assign a wight of 1 be-

tween nodes at the bottom of a branch. For instance, DOC and

DOCX are at the same depth, and there are no sub-trees at the

same level, so the weight of the edge between these types is 1.

Likewise, the edge between TXT and HTML has a weight of 1.

Moving up the tree from these deepest relationships, the edges

at shallower levels have the weight 1/(depth+1) and are con-

nected to every other node at the same level, as well as nodes in

any sub-trees of the branch. By this method, ODT has an edge

to both DOC and DOCX, and these edges both have a wight of
1
2
. Following from there, PDF has an edge to all other types

shown with weight 1
3
. If there are sub-trees at a given level that

have different depths, the maximum depth of the sub-trees is

used to calculate the weight.

Figure 5 shows the final constraint graph derived from the

file type relationship tree. The nodes are colored with the col-

ors generated by the algorithm and the thickness of the edges

shows the derived weight. Note that the edges between TXT

and HTML, and DOC and DOCX have the highest weight. This

coloring can now be used to color any data which has a file type

property, which we discuss an example of below. Although

we use file types for this example, a legend for any categorical

property could be created using this method.

5 RESULTS

Once the constraints for each domain are generated, it is pos-

sible to generate visualizations of the original data using the

generated colors for the data points within the original data.

With the carefully selected constraints for each application do-

main, the optimized color set generated can be applied to the

data through a visualization toolkit of the users choosing. For

the file system examples that follow, we use the JavaScript Info-

Vis toolkit to generate the visualizations, for the school district

visualization a custom Java application was created to display

and color the map areas. With the completed visualizations,

the viewer can effectively analysis the relationships within the

original data because of the optimized color set generated by

the coloring algorithm.

5.1 School Districts

In Figure 6, two levels of the school district feeder pattern data

is visualized. The map on the top right depicts the school dis-

tricts for middle schools, where the map on the top left shows

elementary school areas. Focusing on the top left area of both

maps, the two elementary schools (green and purple) are adja-

cent and distinctly colored as compared to one another. Those

two elementary school districts combined make up the whole

area of their parent node, the middle school area of the map

depicted in blue. Neither of the elementary schools are colored

identically to the parent, as a stronger general separation force

was applied when coloring this data. For this visualization, the

bottom map depicts both levels of the hierarchy together using

colored rings - the inner being the middle school and the outer

ring being the elementary school.

The bottom visualization enables the viewer to identify cer-

tain anomalies. Because the weight of the similarity constraints

is proportional to the feeder pattern, the largest of child nodes

(elementary schools) feeding into a parent (middle school) will

be most similarly colored to its parent. Where the multiple

feeder schools have a similar number of students feeding into

the parent, the similarity constraint of the children to the par-

ent will all be similar, yielding uniformly distributed colors.

In the case of an elementary school where the feeder ratio is

low as compared to its neighbors, that elementary school node

will have a low similarity weight as compared to the combined

general separation force and the dissimilarity constraint push-

ing it from its neighbors, yielding a color that is very different

from those around it. As schools with low feeder ratios are less

desirable, especially when split between multiple regions, be-

ing able to quickly identify those regions is very useful to the

county school system when considering school district bound-

ary changes.

5.2 Directory Structure

The visualization in Figure 7, depicts a three-level directory

hierarchy, and the visualizations in Figures 8 shows a deeper

directory hierarchy. Examining the visualizations allows the

viewer to identify patters of directories where the parent to

child to directories are similar or dissimilar. This is useful in

Fig. 6. Example visualization from the school district domain area. Top: Maps showing elementary (left) and middle (right) school assignments. Bottom: Map showing
both elementary and middle school assignments merged on one map using a ring pattern. Within each region (neighborhoods sharing the same elementary and middle
school assignment), the outer ring shows the elementary school assignment, and the inside shows the middle school assignment. For added clarity, the boundaries of
the middle school assignments are displayed as black lines. The maps also show the locations of schools: diamonds indicate elementary schools and squares indicate
middle schools. [4].

Fig. 7. This final visualization from the directory structure domain problem displays
a directory hierarchy in concentric rings out from the root directory in the center.
The directories have been colored with the automatic coloring algorithms, and
those directories that have a similar size will have a similar coloring as the parent
of that directory.

Fig. 8. This visualization depicts the Directory Structure constraint set as applied
to a deeper file system hierarchy than that of Figure 7.

Fig. 9. This final visualization depicts the same data as displayed in Figure 7, but
colored using the file type constraints rather than the directory size.

finding outliers in the hierarchy, most notably directories that

are empty or that contain significantly larger files than those in

the hierarchy around it.

5.3 File Type

Lastly, the image in Figure 9 depicts the same directory hierar-

chy as the one displayed in Figure 7, but with a different set of

constraints. The colors selected by the algorithm are not based

on the data being visualized, rather, the coloring algorithm was

applied to the constraint graph generated from a tree of file type

and sub-type associations. Each node in the file system hierar-

chy is bound into a single file type based on the count of the

most common file type within the directory. This allows the

viewer to see groups of folders which all have similar domi-

nant file types.

In this case, as previously mentioned, being able to quickly

find folders buried in a directory hierarchy that have an obvi-

ously dissimilar type as compared to those around it. Of in-

terest here is the field of digital forensics in law enforcement

where it may be necessary to search a suspects computer files

for illegal materials. Searching an arbitrarily nested directory

structure by hand is a slow process for a human, and having vi-

sualization tools to quickly locate areas of potential interest are

useful in finding evidence.

6 FUTURE WORK / CONCLUSIONS

We have presented a method for automatically generating a

constraint-based, optimized color set for use in visualizing data

points with one or more related discrete characteristics. Further,

we have demonstrated that the method is useful when applied to

two very different application domains. Further work towards

applying this technique to additional domains will continue, as

Fig. 10. A larger and deeper example data set colored using the file type domain.

well as exploring using the lightness and saturation components

of the HLS color space for visualizing continuous attributes of

data points colored with the algorithm presented.

Additionally, there are opportunities to optimize and sim-

plify the algorithm by consolidating the forces. This could

involve combining the similarity and dissimilarity constraints

into a single relationship with positive and negative values.

ACKNOWLEDGMENTS

This project was based heavily on the unpublished paper Color

Selection for Visualizing Multiple Related Categorical Proper-

ties, by Blazej Bulka, Penny Rheingans, and Marie desJardins,

and we would like to thank them for providing the code for the

coloring algorithm. We would also like to extend thanks to the

University of Maryland, Baltimore County Center for Women

in Technology, who provided the funding for this research to

happen.

REFERENCES

[1] L. BERGMAN, B. ROGOWITZ, and L. TREINISH. Color selection for visualizing

multiple related categorical properties. In Proceedings of IEEE Visualization 1995,

pages 118 – 125, 1995.

[2] D. BORLAND and R. TAYLOR. Rainbow color map (still) considered harmful. IEEE

Computer Graphics and Applications, pages 27, 2, 14 – 17, 2007.

[3] C. A. BREWER. Color use guidelines for data representation. In Proceedings of the

Section on Statistical Graphics., pages 55 – 60, 1999.

[4] B. BULKA, P. RHEINGANS, and M. desJARDINS. A rule-based tool for assisting

colormap selection. Unpublished., 2011.

[5] D. FARNSWORTH. The farnsworth-munsell 100 hue test for the examination of

color discrimination. 1957.

[6] C. G. HEALEY. Choosing effective colours for data visualization. In Proceedings of

IEEE Visualization 1996 (San Francisco)., pages 263 – 270, 1996.

[7] P. RHEINGANS. Task-based color scale design. In Proceedings of Applied Image

and Pattern Recognition 1999., pages 35 – 43, 1999.

[8] N. ROBERTSON, D. P. SANDERS, P. SEYMOUR, and R. THOMAS. A new proof

of the four-color theorem. Electronic Research Announcements of the American Math-

ematical Society, pages 2, 17 – 25, 1996.

[9] C. WARE. Color sequences for univariate maps. IEEE Computer Graphics and

Applications, pages 8, 5, 41 – 49., 1988.

